Attributes of quiet stance in the chronic spinal cat.
نویسندگان
چکیده
Standing is a dynamic task that requires antigravity support of the body mass and active regulation of the position of the body center of mass. This study examined the extent to which the chronic spinal cat can maintain postural orientation during stance and adapt to changes in stance distance (fore-hindpaw separation). Intact cats adapt to changes in stance distance by maintaining a constant horizontal orientation of the trunk and changing orientation of the limbs, while keeping intralimb geometry constant and aligning the ground reaction forces closely with the limb axes. Postural adaptation was compared in four cats before and after spinalization at the T(6) level, in terms of the forces exerted by each paw against the support, body geometry (kinematics) and electromyographic (EMG) activity recorded from chronic, indwelling electrodes, as well as the computed net torques in the fore and hindlimbs. Five fore-hindpaw distances spanning the preferred distance were tested before spinalization, with a total range of 20 cm from the shortest to the longest stance. After spinalization, the cats were trained on a daily basis to stand on the force platform, and all four cats were able to support their full body weight. Three of the four cats could adapt to changes in stance distance, but the range was smaller and biased toward the shorter distances. The fourth cat could stand only at one stance distance, which was 8 cm shorter than the preferred distance before spinalization. All cats shifted their center of pressure closer to the forelimbs after spinalization, but the amount of shift could largely be accounted for by the weight loss in the hindquarters. The three cats that could adapt to changes in stance distance used a similar strategy as the intact cat by constraining the trunk and changing orientation of the limb axes in close relation with the forces exerted by each limb. However, different postures in the fore- and hindlimbs were adopted, particularly at the scapula (more extended) and pelvis (tipped more anteriorly). Other changes from control included a redistribution of net extensor torque across the joints of the forelimb and of the hindlimb. We concluded that the general form of body axis orientation is relatively conserved in the spinal cat, suggesting that the lumbosacral spinal circuitry includes rudimentary set points for hindlimb geometry. Both mechanical and neural elements can contribute toward maintaining body geometry through stiffness regulation and spinal reflexes.
منابع مشابه
Weight support and balance during perturbed stance in the chronic spinal cat.
The intact cat maintains balance during unexpected disturbances of stance through automatic postural responses that are stereotyped and rapid. The extent to which the chronic spinal cat can maintain balance during stance is unclear, and there have been no quantitative studies that examined this question directly. This study examined whether the isolated lumbosacral cord of the chronic spinal ca...
متن کاملEffects of Plantar Flexor Muscles Fatigue on Postural Control during Quiet Stance and External Perturbation in Healthy Subjects
Background: The maintenance of postural control is a key component in dynamic physical activity, especially during muscle fatigue and against external forces. Despite many studies in this field, there is no consensus regarding the effects of plantar flexor muscles fatigue on postural control during different postural tasks.Objective: To evaluate the effects of plantar flexor muscles fatigue on ...
متن کاملAdaptive locomotor plasticity in chronic spinal cats after ankle extensors neurectomy.
After lateral gastrocnemius-soleus (LGS) nerve section in intact cats, a rapid locomotor compensation involving synergistic muscles occurs and is accompanied by spinal reflex changes. Only some of these changes are maintained after acute spinalization, indicating the involvement of descending pathways in functional recovery. Here, we address whether the development of these adaptive changes is ...
متن کاملTest-retest reliability and minimal detectable change for center of pressure measures of postural stability in elderly subjects
Abstract Background: Postural instability has been identified as a potential precursor of falls in elderly subjects. Postural stability in quiet stance is commonly assessed with center of pressure (COP) measures. The purpose of this study was to determine testretest reliability and minimal detectable change (MDC) for the center of pressure (COP) measures in the elderly subjects. Met...
متن کاملClosed-Loop Control of FES-Assisted Arm-Free Standing in Individuals with Spinal Cord Injury: A Feasibility Study
Objectives: The purpose of the present study was to show that the design of a neuroprosthesis for unsupported (arm-free) standing is feasible. We review findings suggesting that a closed-loop controlled functional electrical stimulation (FES) system should be able to facilitate arm-free quiet standing in individuals with spinal cord injury (SCI). Particularly, this manuscript identifies: 1) a c...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of neurophysiology
دوره 82 6 شماره
صفحات -
تاریخ انتشار 1999